11 research outputs found

    On the Connection between Pre-training Data Diversity and Fine-tuning Robustness

    Full text link
    Pre-training has been widely adopted in deep learning to improve model performance, especially when the training data for a target task is limited. In our work, we seek to understand the implications of this training strategy on the generalization properties of downstream models. More specifically, we ask the following question: how do properties of the pre-training distribution affect the robustness of a fine-tuned model? The properties we explore include the label space, label semantics, image diversity, data domains, and data quantity of the pre-training distribution. We find that the primary factor influencing downstream effective robustness (Taori et al., 2020) is data quantity, while other factors have limited significance. For example, reducing the number of ImageNet pre-training classes by 4x while increasing the number of images per class by 4x (that is, keeping total data quantity fixed) does not impact the robustness of fine-tuned models. We demonstrate our findings on pre-training distributions drawn from various natural and synthetic data sources, primarily using the iWildCam-WILDS distribution shift as a test for downstream robustness

    Effects of Parameter Norm Growth During Transformer Training: Inductive Bias from Gradient Descent

    Full text link
    The capacity of neural networks like the widely adopted transformer is known to be very high. Evidence is emerging that they learn successfully due to inductive bias in the training routine, typically a variant of gradient descent (GD). To better understand this bias, we study the tendency for transformer parameters to grow in magnitude (ā„“2\ell_2 norm) during training, and its implications for the emergent representations within self attention layers. Empirically, we document norm growth in the training of transformer language models, including T5 during its pretraining. As the parameters grow in magnitude, we prove that the network approximates a discretized network with saturated activation functions. Such "saturated" networks are known to have a reduced capacity compared to the full network family that can be described in terms of formal languages and automata. Our results suggest saturation is a new characterization of an inductive bias implicit in GD of particular interest for NLP. We leverage the emergent discrete structure in a saturated transformer to analyze the role of different attention heads, finding that some focus locally on a small number of positions, while other heads compute global averages, allowing counting. We believe understanding the interplay between these two capabilities may shed further light on the structure of computation within large transformers.Comment: To appear at EMNLP 202

    Neural Priming for Sample-Efficient Adaptation

    Full text link
    We propose Neural Priming, a technique for adapting large pretrained models to distribution shifts and downstream tasks given few or no labeled examples. Presented with class names or unlabeled test samples, Neural Priming enables the model to recall and conditions its parameters on relevant data seen throughout pretraining, thereby priming it for the test distribution. Neural Priming can be performed at test time in even for pretraining datasets as large as LAION-2B. Performing lightweight updates on the recalled data significantly improves accuracy across a variety of distribution shift and transfer learning benchmarks. Concretely, in the zero-shot setting, we see a 2.45 improvement in accuracy on ImageNet and 3.81 accuracy improvement on average across standard transfer learning benchmarks. Further, using our test time inference scheme, we see a 1.41 accuracy improvement on ImageNetV2. These results demonstrate the effectiveness of Neural Priming in addressing the common challenge of limited labeled data and changing distributions. Code is available at github.com/RAIVNLab/neural-priming.Comment: 18 pages, 8 figures, 9 table

    Matryoshka Representation Learning

    Full text link
    Learned representations are a central component in modern ML systems, serving a multitude of downstream tasks. When training such representations, it is often the case that computational and statistical constraints for each downstream task are unknown. In this context rigid, fixed capacity representations can be either over or under-accommodating to the task at hand. This leads us to ask: can we design a flexible representation that can adapt to multiple downstream tasks with varying computational resources? Our main contribution is Matryoshka Representation Learning (MRL) which encodes information at different granularities and allows a single embedding to adapt to the computational constraints of downstream tasks. MRL minimally modifies existing representation learning pipelines and imposes no additional cost during inference and deployment. MRL learns coarse-to-fine representations that are at least as accurate and rich as independently trained low-dimensional representations. The flexibility within the learned Matryoshka Representations offer: (a) up to 14x smaller embedding size for ImageNet-1K classification at the same level of accuracy; (b) up to 14x real-world speed-ups for large-scale retrieval on ImageNet-1K and 4K; and (c) up to 2% accuracy improvements for long-tail few-shot classification, all while being as robust as the original representations. Finally, we show that MRL extends seamlessly to web-scale datasets (ImageNet, JFT) across various modalities -- vision (ViT, ResNet), vision + language (ALIGN) and language (BERT). MRL code and pretrained models are open-sourced at https://github.com/RAIVNLab/MRL.Comment: 35 pages, 12 figures. NeurIPS 2022 camera ready publicatio

    DataComp: In search of the next generation of multimodal datasets

    Full text link
    Multimodal datasets are a critical component in recent breakthroughs such as Stable Diffusion and GPT-4, yet their design does not receive the same research attention as model architectures or training algorithms. To address this shortcoming in the ML ecosystem, we introduce DataComp, a testbed for dataset experiments centered around a new candidate pool of 12.8 billion image-text pairs from Common Crawl. Participants in our benchmark design new filtering techniques or curate new data sources and then evaluate their new dataset by running our standardized CLIP training code and testing the resulting model on 38 downstream test sets. Our benchmark consists of multiple compute scales spanning four orders of magnitude, which enables the study of scaling trends and makes the benchmark accessible to researchers with varying resources. Our baseline experiments show that the DataComp workflow leads to better training sets. In particular, our best baseline, DataComp-1B, enables training a CLIP ViT-L/14 from scratch to 79.2% zero-shot accuracy on ImageNet, outperforming OpenAI's CLIP ViT-L/14 by 3.7 percentage points while using the same training procedure and compute. We release DataComp and all accompanying code at www.datacomp.ai

    Improving shape deformation in unsupervised image-to-image translation

    No full text
    Unsupervised image-to-image translation techniques are able to map local texture between two domains, but they are typically unsuccessful when the domains require larger shape change. Inspired by semantic segmentation, we introduce a discriminator with dilated convolutions that is able to use information from across the entire image to train a more context-aware generator. This is coupled with a multi-scale perceptual loss that is better able to represent error in the underlying shape of objects. We demonstrate that this design is more capable of representing shape deformation in a challenging toy dataset, plus in complex mappings with significant dataset variation between humans, dolls, and anime faces, and between cats and dogs. ?? Springer Nature Switzerland AG 2018
    corecore